Energy at the Xtreme edge
By Michael T Klare
Recently the press has been abuzz with major discoveries in the Gulf of Mexico and far off Brazil's coast that might give the impression of adding time to the Age of Petroleum. On September 2, for example, BP (formerly British Petroleum) announced that it had found a giant oil field in the Gulf of Mexico about 400 kilometers southeast of Houston. Dubbed "Tiber", it is expected to produce hundreds of thousands of barrels per day when production begins some years from now, giving a boost to BP's status as a major offshore producer. "This is big," commented Chris Ruppel, a senior energy analyst at Execution LLC, a London investment bank. "It says we're seeing that improved technology is unlocking resources that were before either undiscovered or too costly to exploit because of economics."
As it happens, though, anyone who jumped to the conclusion that this field could quickly or easily add to the nation's oil supply would be woefully mistaken. As a start, it's located at a depth of 10,600 meters - greater than the height of Mount Everest, as a reporter from the New York Times noted - and well below the Gulf's floor. To get to the oil, BP's engineers will have to drill through miles of rock, salt, and compressed sand using costly and sophisticated equipment. To make matters worse, Tiber is located smack in the middle of the area in the Gulf regularly hit by massive storms in hurricane season, so any drills operating there must be designed to withstand hurricane-strength waves and winds, as well as sit idle for weeks at a time when operating personnel are forced to evacuate.
A similar picture prevails in the case of Brazil's Tupi field, the other giant discovery of recent years. Located about 320 kilometers east of Rio de Janeiro in the deep waters of the Atlantic Ocean, Tupi has regularly been described as the biggest field to be found in 40 years. Thought to contain some five billion to eight billion barrels of recoverable oil, it will surely push Brazil into the front ranks of major oil producers once the Brazilians have overcome their own series of staggering hurdles: the Tupi field is located below two-and-a-half kilometers of ocean water and another 4km of rock, sand, and salt and so accessible only to cutting-edge, super-sophisticated drilling technologies. It will cost an estimated $70 billion to $120 billion to develop the field and require many years of dedicated effort.
The mining of oil sands and their conversion into useful liquids is a costly and difficult process, and so the urge to do so tells us a great deal about our particular state of energy dependency. Deposits near the surface can be strip-mined, but those deeper underground can only be exploited by pumping in steam to separate the bitumen from the sand and then pumping the bitumen to the surface - a process that consumes vast amounts of water and energy in the form of natural gas (to heat that water into steam). Much of the water used to produce steam is collected at the site and used over again, but some is returned to the local water supply in northern Alberta.
such is the need of our civilization for petroleum products that Canadian oil sands are expected to generate 4.2 million barrels of fuel per day in 2030 - three times the amount being produced today - even as the extraction devastates huge parts of Alberta, consumes staggering amounts of natural gas, cause potentially extensive pollution, and sabotage Canada's efforts to curb its greenhouse-gas emissions.
North of Alberta lies another source of Xtreme energy: Arctic oil and gas. Once largely neglected because of the difficulty of simply surviving, no less producing energy, in the region, the Artic is now the site of a major "oil rush" as global warming makes it easier for energy firms to operate in northern latitudes. Norway's state-owned energy company, StatoilHydro, is now running the world's first natural gas facility above the Arctic Circle, and companies from around the world are making plans to develop oil and gas fields in the Arctic territories of Canada, Greenland (administered by Denmark), Russia, and the United States, where offshore drilling in northern Alaskan waters may soon be the order of the day.
It will not, however, be easy to obtain. Even if global warming raises average temperatures and reduces the extent of the polar ice cap, winter conditions will still make oil production extremely difficult and hazardous. Fierce storms and plunging temperatures will remain common, posing great risk to any humans not hunkered down in secure facilities and making the transport of energy a major undertaking.
Given fears of dwindling oil supplies, none of this has been enough to deter energy-craving companies from plunging into the icy waters. "Despite grueling conditions, interest in oil and gas reserves in the far north is heating up," Brian Baskin reported inthe WSJ. "Virtually every major producer is looking to the Arctic sea floor as the next - some say last - great resource play."
What is true of oil generally is also true of natural gas and coal: most easy-to-reach conventional deposits are quickly being depleted. What remains are largely the "unconventional" supplies.
US producers of natural gas, for example, are reporting a significant increase in domestic output, producing a dramatic reduction in prices. According to the DoE, US gas production is projected to increase from about 20 trillion cubic feet in 2009 to 24 trillion in 2030, a real boon for US consumers, who rely to a significant degree on natural gas.
Most of the unconventional gas in the United States is currently obtained from tight-sand formations (or sandstone), but a growing percentage is acquired from shale rock through a process known as hydraulic fracturing. In this method, water is forced into the underground shale formations to crack the rock open and release the gas. Huge amounts of water are employed in the process, and environmentalists fear that some of this water, laced with pollutants, will find its ways into the nation's drinking supply. In many areas, moreover, water itself is a scarce resource, and the diversion of crucial supplies to gas extraction may diminish the amounts available for farming, habitat preservation, and human consumption. Nonetheless, production of shale gas is projected to jump from two trillion cubic feet per year in 2009 to four trillion in 2030.
Coal presents a somewhat similar picture. Although many environmentalists object to the burning of coal because it releases far more climate-altering greenhouse gases than other fossil fuels for each BTU produced, the nation's electric-power industry continues to rely on coal because it remains relatively cheap and plentiful. Yet many of the country's most productive sources of anthracite and bituminous coal - the types with the greatest energy potential - have been depleted, leaving (as with oil) less productive sources of these types, along with large deposits of less desirable, more heavily polluting sub-bituminous coal, much of it located in Wyoming.
To get at what remains of the more valuable bituminous coal in Appalachia, mining companies increasingly rely on a technique known as mountaintop removal, described by John M Broder of the New York Times as "blasting off the tops of mountains and dumping the rubble into valleys and streams." Long opposed by environmentalists and residents of rural Kentucky and West Virginia, whose water supplies are endangered by the dumping of excess rock, dirt, and a variety of contaminants, mountaintop removal received a strong endorsement from the George W Bush administration, which in December 2008 approved a regulation allowing for a vast expansion of the practice. President Obama has vowed to reverse this regulation, but he favors the use of "clean coal" as part of a transitional energy strategy. It remains to be seen how far he will go in reining in the coal industry.
Xtreme conflict
So let's be blunt: we are not (yet) entering the much-heralded Age of Renewables. That bright day will undoubtedly arrive eventually, but not until we have moved much closer to the middle of this century and potentially staggering amounts of damage has been done to this planet in a fevered search for older forms of energy.
In the meantime, the era of Xtreme energy will be characterized by an ever-deepening reliance on the least accessible, least desirable sources of oil, coal, and natural gas. This period will surely involve an intense struggle over the environmental consequences of reliance on such unappealing sources of energy. In this way, Big Oil and Big Coal - the major energy firms - may grow even larger, while the relatively moderate fuel and energy prices of the present moment will be on the rise, especially given the high cost of extracting oil, gas, and coal from less accessible and more challenging locations.
One other thing is, unfortunately, guaranteed: the era of Xtreme energy will also involve intense geopolitical struggle as major energy consumers and producers like the United States, China, the European Union, Russia, India, and Japan vie with one another for control of the remaining supplies. Russia and Norway, for example, are already sparring over their maritime boundary in the Barents Sea, a promising source of natural gas in the far north, while China and Japan have tussled over a similar boundary dispute in the East China Sea, the site of another large gas field.
All the Arctic nations - Canada, Denmark, Norway, Russia, and the United States - have laid claim to large, sometimes overlapping, slices of the Arctic Ocean, generating fresh boundary disputes in these energy-rich areas.
None of these disputes has yet resulted in violent conflict, but warships and planes have been deployed on some occasions and the potential exists for future escalation as tensions rise and the perceived value of these assets grows. And while we're at it, don't forget today's energy hotspots like Nigeria, the Middle East, and the Caspian Basin. In the Xtreme era to come, they are no less likely to generate conflicts of every sort over the ever-more precious supplies of more easily accessible energy.
For most of us, life in the era of Xtreme energy will not be easy. Energy prices will rise, environmental perils will multiply, ever more carbon dioxide will pour into the atmosphere, and the risk of conflict will grow. We possess just two options for shortening this difficult era and mitigating its impact. They are both perfectly obvious - which, unfortunately, makes them no easier to bring about: drastically speed up the development of renewable sources of energy and greatly reduce our reliance on fossil fuels by reorganizing our lives and our civilization so that we might consume less of them in everything we do.
That may sound easy enough, but tell that to governments around the world. Tell that to Big Energy. Hope for it, work for it, but in the meantime, keep your seatbelts buckled. This roller-coaster ride is about to begin.
http://www.atimes.com/atimes/Global_.../KI24Dj02.html
By Michael T Klare
Recently the press has been abuzz with major discoveries in the Gulf of Mexico and far off Brazil's coast that might give the impression of adding time to the Age of Petroleum. On September 2, for example, BP (formerly British Petroleum) announced that it had found a giant oil field in the Gulf of Mexico about 400 kilometers southeast of Houston. Dubbed "Tiber", it is expected to produce hundreds of thousands of barrels per day when production begins some years from now, giving a boost to BP's status as a major offshore producer. "This is big," commented Chris Ruppel, a senior energy analyst at Execution LLC, a London investment bank. "It says we're seeing that improved technology is unlocking resources that were before either undiscovered or too costly to exploit because of economics."
As it happens, though, anyone who jumped to the conclusion that this field could quickly or easily add to the nation's oil supply would be woefully mistaken. As a start, it's located at a depth of 10,600 meters - greater than the height of Mount Everest, as a reporter from the New York Times noted - and well below the Gulf's floor. To get to the oil, BP's engineers will have to drill through miles of rock, salt, and compressed sand using costly and sophisticated equipment. To make matters worse, Tiber is located smack in the middle of the area in the Gulf regularly hit by massive storms in hurricane season, so any drills operating there must be designed to withstand hurricane-strength waves and winds, as well as sit idle for weeks at a time when operating personnel are forced to evacuate.
A similar picture prevails in the case of Brazil's Tupi field, the other giant discovery of recent years. Located about 320 kilometers east of Rio de Janeiro in the deep waters of the Atlantic Ocean, Tupi has regularly been described as the biggest field to be found in 40 years. Thought to contain some five billion to eight billion barrels of recoverable oil, it will surely push Brazil into the front ranks of major oil producers once the Brazilians have overcome their own series of staggering hurdles: the Tupi field is located below two-and-a-half kilometers of ocean water and another 4km of rock, sand, and salt and so accessible only to cutting-edge, super-sophisticated drilling technologies. It will cost an estimated $70 billion to $120 billion to develop the field and require many years of dedicated effort.
The mining of oil sands and their conversion into useful liquids is a costly and difficult process, and so the urge to do so tells us a great deal about our particular state of energy dependency. Deposits near the surface can be strip-mined, but those deeper underground can only be exploited by pumping in steam to separate the bitumen from the sand and then pumping the bitumen to the surface - a process that consumes vast amounts of water and energy in the form of natural gas (to heat that water into steam). Much of the water used to produce steam is collected at the site and used over again, but some is returned to the local water supply in northern Alberta.
such is the need of our civilization for petroleum products that Canadian oil sands are expected to generate 4.2 million barrels of fuel per day in 2030 - three times the amount being produced today - even as the extraction devastates huge parts of Alberta, consumes staggering amounts of natural gas, cause potentially extensive pollution, and sabotage Canada's efforts to curb its greenhouse-gas emissions.
North of Alberta lies another source of Xtreme energy: Arctic oil and gas. Once largely neglected because of the difficulty of simply surviving, no less producing energy, in the region, the Artic is now the site of a major "oil rush" as global warming makes it easier for energy firms to operate in northern latitudes. Norway's state-owned energy company, StatoilHydro, is now running the world's first natural gas facility above the Arctic Circle, and companies from around the world are making plans to develop oil and gas fields in the Arctic territories of Canada, Greenland (administered by Denmark), Russia, and the United States, where offshore drilling in northern Alaskan waters may soon be the order of the day.
It will not, however, be easy to obtain. Even if global warming raises average temperatures and reduces the extent of the polar ice cap, winter conditions will still make oil production extremely difficult and hazardous. Fierce storms and plunging temperatures will remain common, posing great risk to any humans not hunkered down in secure facilities and making the transport of energy a major undertaking.
Given fears of dwindling oil supplies, none of this has been enough to deter energy-craving companies from plunging into the icy waters. "Despite grueling conditions, interest in oil and gas reserves in the far north is heating up," Brian Baskin reported inthe WSJ. "Virtually every major producer is looking to the Arctic sea floor as the next - some say last - great resource play."
What is true of oil generally is also true of natural gas and coal: most easy-to-reach conventional deposits are quickly being depleted. What remains are largely the "unconventional" supplies.
US producers of natural gas, for example, are reporting a significant increase in domestic output, producing a dramatic reduction in prices. According to the DoE, US gas production is projected to increase from about 20 trillion cubic feet in 2009 to 24 trillion in 2030, a real boon for US consumers, who rely to a significant degree on natural gas.
Most of the unconventional gas in the United States is currently obtained from tight-sand formations (or sandstone), but a growing percentage is acquired from shale rock through a process known as hydraulic fracturing. In this method, water is forced into the underground shale formations to crack the rock open and release the gas. Huge amounts of water are employed in the process, and environmentalists fear that some of this water, laced with pollutants, will find its ways into the nation's drinking supply. In many areas, moreover, water itself is a scarce resource, and the diversion of crucial supplies to gas extraction may diminish the amounts available for farming, habitat preservation, and human consumption. Nonetheless, production of shale gas is projected to jump from two trillion cubic feet per year in 2009 to four trillion in 2030.
Coal presents a somewhat similar picture. Although many environmentalists object to the burning of coal because it releases far more climate-altering greenhouse gases than other fossil fuels for each BTU produced, the nation's electric-power industry continues to rely on coal because it remains relatively cheap and plentiful. Yet many of the country's most productive sources of anthracite and bituminous coal - the types with the greatest energy potential - have been depleted, leaving (as with oil) less productive sources of these types, along with large deposits of less desirable, more heavily polluting sub-bituminous coal, much of it located in Wyoming.
To get at what remains of the more valuable bituminous coal in Appalachia, mining companies increasingly rely on a technique known as mountaintop removal, described by John M Broder of the New York Times as "blasting off the tops of mountains and dumping the rubble into valleys and streams." Long opposed by environmentalists and residents of rural Kentucky and West Virginia, whose water supplies are endangered by the dumping of excess rock, dirt, and a variety of contaminants, mountaintop removal received a strong endorsement from the George W Bush administration, which in December 2008 approved a regulation allowing for a vast expansion of the practice. President Obama has vowed to reverse this regulation, but he favors the use of "clean coal" as part of a transitional energy strategy. It remains to be seen how far he will go in reining in the coal industry.
Xtreme conflict
So let's be blunt: we are not (yet) entering the much-heralded Age of Renewables. That bright day will undoubtedly arrive eventually, but not until we have moved much closer to the middle of this century and potentially staggering amounts of damage has been done to this planet in a fevered search for older forms of energy.
In the meantime, the era of Xtreme energy will be characterized by an ever-deepening reliance on the least accessible, least desirable sources of oil, coal, and natural gas. This period will surely involve an intense struggle over the environmental consequences of reliance on such unappealing sources of energy. In this way, Big Oil and Big Coal - the major energy firms - may grow even larger, while the relatively moderate fuel and energy prices of the present moment will be on the rise, especially given the high cost of extracting oil, gas, and coal from less accessible and more challenging locations.
One other thing is, unfortunately, guaranteed: the era of Xtreme energy will also involve intense geopolitical struggle as major energy consumers and producers like the United States, China, the European Union, Russia, India, and Japan vie with one another for control of the remaining supplies. Russia and Norway, for example, are already sparring over their maritime boundary in the Barents Sea, a promising source of natural gas in the far north, while China and Japan have tussled over a similar boundary dispute in the East China Sea, the site of another large gas field.
All the Arctic nations - Canada, Denmark, Norway, Russia, and the United States - have laid claim to large, sometimes overlapping, slices of the Arctic Ocean, generating fresh boundary disputes in these energy-rich areas.
None of these disputes has yet resulted in violent conflict, but warships and planes have been deployed on some occasions and the potential exists for future escalation as tensions rise and the perceived value of these assets grows. And while we're at it, don't forget today's energy hotspots like Nigeria, the Middle East, and the Caspian Basin. In the Xtreme era to come, they are no less likely to generate conflicts of every sort over the ever-more precious supplies of more easily accessible energy.
For most of us, life in the era of Xtreme energy will not be easy. Energy prices will rise, environmental perils will multiply, ever more carbon dioxide will pour into the atmosphere, and the risk of conflict will grow. We possess just two options for shortening this difficult era and mitigating its impact. They are both perfectly obvious - which, unfortunately, makes them no easier to bring about: drastically speed up the development of renewable sources of energy and greatly reduce our reliance on fossil fuels by reorganizing our lives and our civilization so that we might consume less of them in everything we do.
That may sound easy enough, but tell that to governments around the world. Tell that to Big Energy. Hope for it, work for it, but in the meantime, keep your seatbelts buckled. This roller-coaster ride is about to begin.
http://www.atimes.com/atimes/Global_.../KI24Dj02.html